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Plasmas in modern tokamak experiments contain a significant fraction of impurity ion spe-
cies in addition to main deuterium background. A new unlike-particle collision operator for
df particle simulation has been developed to self-consistently study the non-local effects of
impurities on neoclassical transport in toroidal plasmas. A new algorithm for simulation of
cross-collisions between different ion species includes test-particle and conserving field-
particle operators. The field-particle operator is designed to enforce conservation of num-
ber, momentum and energy. It was shown that the new operator correctly simulates the
thermal equilibration of different plasma components. It was verified that the ambipolar
radial electric field reaches steady state when the total radial guiding center particle cur-
rent vanishes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In present advanced tokamak experiments the improved confinement regime is achieved by reducing the turbulent trans-
port in the ion channel. To understand the performance of such toroidal devices, the experimental data is normally compared
with irreducible neoclassical transport level. While neoclassical theory has been well developed [1–3], there is need for di-
rect numerical solution of the drift-kinetic equations globally, from the magnetic axis to the plasma boundary, with appro-
priate boundary conditions. This is necessary if one needs to capture non-local physics near magnetic axis or sharp profile
gradients where basic assumptions of most local theories are violated. Also, the large scale ambipolar electric field must be
self-consistently calculated by solving the Poisson equation. Self-consistency of the electric field, a feature absent from neo-
classical theories, is important to maintain transport ambipolarity. While local neoclassical transport in axisymmetric sys-
tems, like tokamaks, is intrinsically ambipolar, non-local effects require constraint on the electric field to maintain
ambipolarity [4]. In addition to main ion species, which is normally deuterium, most of experimentally relevant plasmas
contain one or more ion species. Consequently, impurity particles can make a significant contribution to main deuterium
heat flux indirectly by producing additional cross-species collisions.

In this paper we address the development of an unlike-particle collision operator for df particle simulation technique. In
addition to a test-particle operator, we describe a new field-particle operator which conserves particle number, energy and
momentum. This work generalizes the like-particle collision operator developed in Ref. [5] to a system which involves par-
ticles with different masses and charges.

The ion drift-kinetic equation for the distribution function fa(X, t) for ion species a (with mass ma and charge Za) is given
by the following expression
. All rights reserved.
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Cab½fa; fb�: ð1Þ
On the right hand side is the collision operator which includes self-collisions of ion species a as well as cross-collisions be-
tween various species. The guiding center coordinates X = (x,qk,l) evolve according to the Lagrangian equations
d
dt

@

@ _X
La

� �
� @

@X
La ¼ 0: ð2Þ
Here x = (r,h,f) and r, h and f are radial, poloidal and toroidal spatial coordinates correspondingly. The Lagrangian is given by
La ¼ Zaep � _x� Ha. Here p = (pr,ph,pf) is canonical angular momentum and the Hamiltonian is
Ha ¼
Z2

ae2

2ma
q2
kB

2 þ lBþ ZaU; ð3Þ
where magnetic moment l ¼ mav2
?=2B ( _l ¼ 0 due to conservation of the adiabatic moment) and parallel gyroradius

qk = mavk/Zae B are expressed in terms of parallel and perpendicular velocities vk and v\. U(r) is the electric potential. The
spacial part of _x may be rewritten in more conventional form as vk + vd, where guiding center velocity vd includes both
the �rU � B drift as well as gradient rB and curvature drifts in inhomogeneous magnetic field.

In df algorithm [6–8], one solves the following equation for ion species a
@

@t
þ _X � @

@X

� �
dfa ¼ � _X � @

@X
F0a þ

X
b

Cab½dfa; F0b� þ Cab½F0a; dfb�ð Þ; ð4Þ
which is obtained directly from Eq. (1) by substituting fs = F0s + dfs and linearising the collision operator. F0s is a time-inde-
pendent shifted Maxwellian distribution function which satisfies
Cab½F0a; F0b� ¼ 0 ð5Þ
for any a and b.
The local shifted Maxwellian background distribution function is expressed in the following form [9,6]
F0a � F0aðna; T;UkÞ ¼ na
ma

2pT

� �3=2
exp �ma

T
ðvk � UkÞ2=2þ lB
� �h i

: ð6Þ
Here na(r) � hna(r,h)i, T(r) and xt(r) = [B/I(r)]Uk(r,h) are experimentally given profiles for the ion density, temperature and
toroidal angular frequency. These quantities together with U(t = 0) serve as initial conditions for our simulation. I(r) = RBf,
where R is the major radius, Bf and Bh are the toroidal and poloidal components of the magnetic field B.

To satisfy the constraint Eq. (5) on background Maxwellian distribution functions, we must have the same ion tempera-
ture T(r) and parallel flow Uk(r) profiles in the distribution functions (6) for all species. Experimentally observed tempera-
tures Ts(r) and toroidal angular frequencies xts(r) might be different for different species s; this difference is captured by
initial dfs(t = 0) in the following form
dfsðt ¼ 0Þ ¼ F0sðns; Ts;UksÞ � F0sðns; T;UkÞ: ð7Þ
Our df algorithm with linearized collision operator requires that dfs/F0s� 1. While temperature and parallel velocity profiles
may be substantially different between different species, especially between ions and electrons, recent drift-kinetic simula-
tions of realistic axisymmetric toroidal fusion devices show that this condition is well satisfied in deuterium plasmas in pres-
ence of carbon impurity [10,11].

Self-consistent ambipolar potential U(r) in general geometry is included via the equation [4]
hjrrj2i þ 4pc2
X

b

nbmb
jrrj2

B2

* + !
@2U
@t@r

¼ 4p
X

b

ZbeCb; ð8Þ
which is obtained from Ampere’s equation. Angular brackets denote a flux surface average. The second term on the left hand
side is the classical polarization current summed over species. The term on the right hand side is the radial current of ion
guiding centers
X
b

ZbeCs �
X

b

Zbe
Z

d3vðvd � rrÞdfb

� �
: ð9Þ
In our algorithm we use the two-weight approach [5]. The first weight w is attached to each marker as a measure of the devi-
ation of fs from the fixed background F0s. The need for the second weight p is motivated by the fact that in neoclassical sim-
ulations marker distribution function might also significantly deviate from the background F0s. Defining the marker
distribution function for species s in the extended phase space
gsðX;w;p; tÞ �
X

i

dðX � XsiðtÞÞdðw�wsiðtÞÞdðp� psiðtÞÞ; ð10Þ
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its kinetic equation may be written as follows
Dgs

Dt
þ @

@p
dp
dt

gs

� �
þ @

@w
dw
dt

gs

� �
¼
X

b

Cab½gs; F0b�: ð11Þ
The Eq. (4) for the evolution of dfs as well as trivial equation for the background distribution function
DF0s

Dt
¼ 0 ð12Þ
are reproduced when the following definitions for the marker particle weights w and p are adopted
Z
dwwdpgs ¼ dfs; ð13ÞZ
dwdpð1� pÞgs ¼ F0s ð14Þ
together with the following equations of motion for the two marker weights
dw
dt
¼ 1� p

F0s
�DF0s

Dt
þ
X

b

Csb½F0s; dfb�
 !

� gðw� �wsÞ; ð15Þ

dp
dt
¼ 1� p

F0s
�DF0s

Dt

� �
� gðp� �psÞ: ð16Þ
Here g is the damping rate [12], which provides a continuous relaxation of w and p toward toward their locally average val-
ues �ws and �ps. This procedure is introduced to reduce particle noise due to marker weight spreading without affecting phys-
ics results. Equations for dfs and F0s are not affected by these additional terms, which may be illustrated by substituting Eqs.
(15) and (16) into Eq. (11) and taking moments Eqs. (13) and (14).
2. Unlike-particle collision operator

On the right hand side of Eq. (4), the linearised unlike-particle collision operator for species a colliding with species b can
be rewritten as follows
Cab½dfa; F0b� þ Cab½F0a; dfb� � CTP
abðdfaÞ þ CFP

abðdfbÞ: ð17Þ
The first term on the right hand side is the test-particle operator
CTP
abðdfaÞ ¼

@

@v � ðvFdfaÞ þ
@2

@v@v : GI þ H
vv
v2

� �
dfa ð18Þ
to describe the drag and diffusion part of the collisions. The coefficients
F ¼ �mab
v3

nb

@

@v HbðvÞ; ð19Þ

G ¼ mab
v2

2nb

@

@v GbðvÞ; ð20Þ

H ¼ mab
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2nb
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@v2 �
1
v
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@v

 !
GbðvÞ ð21Þ
are expressed in terms Rosenbluth’s potentials
GbðvÞ ¼
Z

d3v 0F0bðv 0Þjv � v 0j; ð22Þ

HbðvÞ ¼ 1þma

mb

� �Z
d3v 0 F0bðv 0Þ

jv � v 0j : ð23Þ
The collision frequency is defined by mab ¼ 4pZ2
aZ2

bKabnb=m2
av3

a . The standard Monte Carlo technique [13] is utilized in the
drift-kinetic simulation to implement this operator.

The second term on the right hand side in Eq. (17) is the field-particle operator. This operator appears as a source term in
Eq. (4), and not being sensitive to the details of dfb, may be rewritten in the following form [15,14]
CFP
ab0ðdfbÞ ¼ RabðvÞvkdP0

ab þQabðvÞdE0
ab ð24Þ
Here, dP0
ab and dE0

ab are momentum and energy lost by species b test-particles as a result of collisions with species a field-
particles
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dP0
ab ¼ �

Z
d3vmbvkCTP

baðdfbÞ; ð25Þ

dE0
ab ¼ �

Z
d3vðmbv2=2ÞCTP

baðdfbÞ: ð26Þ
Since test-particle collision operator conserves particle number, we remember that
dN0
ab ¼ �

Z
d3vCTP

baðdfbÞ ¼ 0: ð27Þ
The functionsRab and Qab are to be determined from the requirement that momentum and energy gained by species a field-
particles must equal that lost by species b test particles
Z

d3vmavkCFP
abðdfbÞ ¼ dP0

ab; ð28ÞZ
d3vðmav2=2ÞCFP

abðdfbÞ ¼ dE0
ab: ð29Þ
With appropriate choices of multiplying factors, the functions Rab and Qab may be found as follows:
RabðvÞvk ¼
CTP

abðmavkF0aÞR
d3v 0mav 0kC

TP
ab mav 0kF0a

� � ; ð30Þ

QabðvÞ ¼
CTP

ab mav2F0a
� 	

R
d3v 0 mav 02=2ð ÞCTP

ab mav 02F0að Þ
: ð31Þ
The resulting operator Eq. (24) now satisfies conservation properties Eqs. (28) and (29). This can be verified by remembering
that the test-particle operator preserves parity in v 0k. Specifically, CTP

abðmav 0kF0aÞ is odd in v 0k, and CTP
abðmav 02F0aÞ is even in v 0k.

Since we use Maxwellian background distribution functions, these expressions may be simplified by analytically comput-
ing the Rosenbluth potentials [13]:
RabðvÞ ¼
3
ffiffiffiffi
p
p

4naT
ð1þmb=maÞ3=2y�3=2

b /ðybÞ; ð32Þ

QabðvÞ ¼
ffiffiffiffi
p
p

2naT
ð1þmb=maÞ3=2y�1=2

b ðma=mb � d=dybÞ/ðybÞ; ð33Þ
where /ðyÞ ¼ 2=
ffiffiffiffi
p
p R y

0 et
ffiffi
t
p

dt and
yb ¼ v2=v2
b ¼ mbv2=ð2TÞ: ð34Þ
As was illustrated by Sugama et al. [16], the test-particle CTP
ab and field-particle CFP

ab0 operators defined by Eq. (24) and (24)
satisfy the adjointness relations
Z

d3v dfa

F0a
CTP

abðdgaÞ ¼
Z

d3v dga

F0a
CTP

abðdgaÞ; ð35Þ

Ta

Tb

Z
d3v dfa

F0a
CFP

ab0ðdfbÞ ¼
Z

d3v dfb

F0b
CFP

ba0ðdfaÞ; ð36Þ
as well as Boltzmann’s H-theorem
Ta

Tb

Z
d3v dfa

F0a
CTP

abðdfaÞ þ CFP
abðdfbÞ

h i
þ
Z

d3v dfb

F0b
CTP

baðdfbÞ þ CFP
baðdfaÞ

h i
6 0; ð37Þ
which states the asymptotic relaxation of the distribution function to the local Maxwellian equilibrium state.
In Eq. (37), the left hand side vanishes when dfs perturbations in the following form
dfs ¼ F0s
dns

ns
þms

Ts
dUkvk þ

dTs

Ts

mav2

2Ta
� 3

2

� �� �
ð38Þ
satisfy the correct null space of the linearized operator
CTP
abðdfaÞ þ CFP

abðdfbÞ ¼ 0: ð39Þ
Implementation of CFP
ab0 according to (24) within df algorithm Eqs. (15) and (16) leads to unsatisfactory particle number con-

servation properties. This is due to the fact that, although test-particle operator conserves number according to Eq. (27), the
field-particle operator Eq. (24) affects particle number moment

R
d3vdf by altering df according to Eq. (4). To obtain im-

proved field-particle operator, one can use the procedure developed by Wang et al. [5] for iterative calculation of the
field-particle conserving part in the following form
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CFP
abðdfbÞ ¼

XN�1

n¼0

CFP
abnðdfbÞ ð40Þ

CFP
abnðdfbÞ ¼ HabðvÞdNn

ab þRabðvÞvkdPn
ab þQabðvÞdEn

ab:
An additional function Hab is to be determined.
Operator (40) is implemented as a sequence of N iterations to enforce the appropriate conservation constraints. Specif-

ically, the first n = 0 iteration enforces momentum and energy conservation according to Eqs. (28) and (29). Since simulation
uses a finite number of markers, the consequent iterations are necessary to further improve momentum and energy (to-
gether with number) conservation properties according to
dNn
ab ¼

Z
d3vCFP

abn�1ðdfbÞ; ð41Þ

dPn
ab ¼

Z
d3vmbvkCFP

abn�1ðdfbÞ; ð42Þ

dEn
ab ¼

Z
d3vðmbv2=2ÞCFP

abn�1ðdfbÞ: ð43Þ
Analogously to Rab and Qab functions, the Hab function is chosen to be
HabðvÞ ¼ 1�QabðvÞ; ð44Þ
so that the resulting operator Eq. (40) satisfies conservation properties Eqs. (41)–(43) as well as adjointness relation Eq. (36)
and H-theorem Eq. (37). Self-adjointness and H-theorem in presence of contribution in Eq. (40) due to an additional HabðvÞ
term can be demonstrated by remembering that the first (n = 0) iteration enforces conservation of number and energy lead-
ing to
dN1
ab

Z
d3v dfa

F0a
HabðvÞ ¼ 0 ð45Þ
during the second (n = 1) iteration.
In Fig. 1, we show the time evolution of the radial electric field Er = �oU/@r (at r/a = 0.45) as it approaches the steady state.

The simulation was performed for deuterium-carbon two-species plasma in toroidal axisymmetric geometry with large-as-
pect ratio (major over minor radius, R/a = 10) and circular magnetic surfaces. The equilibrium magnetic field and major ra-
dius are B = 3T and R = 5 m. The time is normalized to deuterium-deuterium collision frequency mDD. The ratios of thermal
banana orbit width over typical density n(r) and temperature T(r) scale lengths are Db/Ln � 0.25 and Db/LT � 0.08,
respectively.

In this simulation, due to axisymmetric geometry, the unlike-particle collisions drive intrinsically ambipolar particle
fluxes, and thus do not produce any radial current. Due to small electron/ion mass ratio, the electron radial currents are
much smaller than the ion currents, and thus the electron contribution to ambipolar Er dynamics is neglected. This would
not be true in non-axisymmetric geometry, such as in a stelarator, where particle fluxes driven by unlike-particle collisions
are not intrinsically ambipolar.

In Fig. 2, the evolution of ZsCs from Eq. (9) is illustrated for both deuterium and carbon s = D,C. We verified that the ambi-
polar radial electric field reaches steady state when the total radial guiding center particle current (the right hand side of (8))
vanishes
0 0.5 1 1.5 2

−3

−2

−1

0

E r(k
V/

m
)

tνDD

Fig. 1. Time dependence of the radial electric field.
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Fig. 2. Time dependence of ZsCs for deuterium (black) and carbon (red). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. Radial dependence of deuterium flux CD versus normalized minor radius r/a.

R.A. Kolesnikov et al. / Journal of Computational Physics 229 (2010) 5564–5572 5569
X
s

ZseCs ¼ 0; ð46Þ
while individual particle fluxes Cs stay finite.
In Fig. 3, the black dashed curve shows the steady state deuterium particle flux CD versus normalized minor radius r/a.

The red curve is the neoclassical estimate for the deuterium flux from Ref. [2]. The the black and the red curves are close to
each other, except near the magnetic axis, where the discrepancy is due to the finite ion orbit size non-local effects [6,10,11].
3. Conservation properties

Fig. 4 shows the residual errors in number and energy. The blue and the red crosses (for deuterium and carbon) show the
errors due to application of CFP

ab0ðdfbÞ operator Eq. (24), which enforces conservation of only momentum and energy. The
resulting error in particle number is not satisfactory, which is the reason CFP

abðdfbÞ operator (40) needs to be used instead.
Application of the complete operator (40) leads to improved residual error in particle number, which is comparable to resid-
ual errors in momentum and energy (squares in Fig. 4). Three-time (N = 3) recursive operations of CFP

ab were used for this fig-
ure. Note that the deuterium component has slightly higher residual errors in all quantities compared to the carbon
component due to higher thermal velocity.

While there is significant improvement in momentum and energy conservation when CFP
ab is implemented, the residual

errors will depend on the number of markers used in the simulation. It is difficult to have sufficient number of markers, espe-
cially for non-axisymmetric systems, for the error to converge. To resolve this problem, we follow the procedure developed
by Satake [17] rewriting the field-particle operator in the following form
CFP
abðdfbÞ ¼ HabðvÞdN þRabðvÞvkdP þQabðvÞdE: ð47Þ
Instead of using theoretical values for the functions dN, dP and dE, we find them from solving the following equation
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Fig. 4. Residual errors in energy and number for a set of sample simulation markers. The blue and the red markers are for deuterium and carbon,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ma
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d3v

1
vk

v2=2

0
B@

1
CACFP

abðdfbÞ ¼
dN0

ab

dP0
ab

dE0
ab

0
B@

1
CA; ð48Þ
which is a statement of conservation of number, momentum and energy Eqs. (27)–(29). For the simulation with a finite nu-
mer of markers, Eq. (48) may be rewritten as follows
XK

k¼1

ð1� pkÞ
Hab Rabvk Qab

Habvk Rabv2
k Qabvk

Habv2 Rabv2vk Qabv2

0
B@

1
CA

k

�
dN

dP

dE

0
B@

1
CA ¼ �

0
dP0

ab=ma

2dE0
ab=ma

0
B@

1
CA: ð49Þ
The Eq. (49) is designed to precisely enforce conservation of number, momentum and energy locally in configuration space. k
is the parameter to sum over the total number of markers K in a cell of a spatial grid. In this procedure, this spatial grid must
be chosen to be fine enough to resolve the profiles of equilibrium magnetic field and radial electric field. Using this approach,
the error is at the rounding-error level (circles in Fig. 4) for both deuterium and carbon, independent of the number of mark-
ers in the simulation.
4. Thermal equilibration

In this section, we conduct a test of our unlike species collision operator by simulating thermal equilibration process in
deuterium-carbon plasma. If deuterium and carbon both initially have Maxwellian distributions, but with different temper-
atures TD0 and TC0, the equilibration process for carbon will be described by the following equation
dTC

dt
¼ ��mCD

� ðTD � TCÞ; ð50Þ
with the total energy being preserved according to
nCTC þ nDTD ¼ nCTC0 þ nDTD0: ð51Þ
The relaxation frequency is given by
�mCD
� ¼

2
3

ffiffiffiffi
2
p

r
mC

mD

TC

TC0
þmC

mD

TD

TC0

� ��3=2

mCD ð52Þ
and mab ¼ 4pZ2
aZ2

bKabnb=m2
av3

a .

Figs. 5 and 6 show the time dependences of TC/TC0 and (TC � TD)/(TC0 � TD0) as the difference between deuterium and car-
bon temperatures vanished as a result of thermal relaxation brought by the collision operator. We use 10000 markers for
both deuterium and carbon with TC0/TD0 = 0.5 and nC/nD = 0.85, and simulation result agrees very well with the theory (50).
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Fig. 6. Time dependence of (TC � TD)/(TC0 � TD0). The solid curve is from simulation, the dashed curve is analytical prediction.
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Fig. 5. Time dependence of normalized carbon temperature as the thermal equilibration occurs between carbon and deuterium. The solid curve is from
simulation, the dashed curve is analytical prediction.
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5. Conclusions

We developed a new unlike-particle collision operator for df gyrokinetic particle simulation. This operator is necessary for
self-consistent study of finite ion orbit effects in presence of impurities on neoclassical transport in toroidal plasmas. We
described an algorithm for simulation of unlike-particle collisions in gyrokinetic framework. This includes test-particle
and conserving field-particle parts. The field-particle operator is designed to enforce conservation of number, momentum
and energy. It was shown that the new operator correctly simulates the thermal equilibration of different plasma compo-
nents. It was verified that the ambipolar radial electric field reaches steady state when the total radial guiding center particle
current vanishes.
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